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Consanguinity and Relative-Pair Methods
for Linkage Analysis

To the Editor:
The recent paper by Génin and Clerget-Darpoux (1996)
makes an important and timely point: that linkage anal-
yses using nonparametric statistics in an affected-sib-pair
design can be made more powerful by assaying identity-
by-descent sharing within inbred siblings. However, we
believe some of the technical details of their mathemat-
ical model and derivations may be in error.

In Appendix A of their paper, Génin and Clerget-Dar-
poux derive “IBW-state probabilities” (or “condensed
coefficients of identity” [Jacquard 1974]) for siblings
from a population with a mean inbreeding coefficient a,
which is assumed to be constant over time and to be
equal to the mean kinship coefficient. These are perhaps
unrealistic assumptions in terms of many inbred human
populations, as mean kinship coefficients change over
time because of changing demographic factors (Khoury
et al. 1987), and mean inbreeding coefficients are often
much higher than mean kinship coefficients (De Brae-
keleer et al. 1993, 1996). Even so, under the modeling
assumptions made by Génin and Clerget-Darpoux, the
probabilities that they present fail to satisfy the following
two consistency checks:

1. Let Di represent the probability of being in con-
densed identity state Si, where the range of i is 1–9, and
assume that the two sibs are numbered “3” and “4”
and that the parents are numbered “1” and “2.” Then,
according to a formula presented by Jacquard (1974),
the kinship coefficient between the siblings, F34, should
be

1 1
D � (D � D � D ) � D . (1)1 3 5 7 82 4

We can derive what the kinship coefficient should be by
classical recursion methods:

1
( )F � F � F34 31 322

1
( )� F � F � F � F11 21 12 224

1 1 1
( ) ( )� 1 � a �a�a� 1 � a[ ]4 2 2

1
( )� 1 � 3a , (2)

4

because, under Génin and Clerget-Darpoux’s assump-
tions, the inbreeding coefficient of each parent is a and
the kinship between the parents is also a. However, when
we apply equation (1) to Génin and Clerget-Darpoux’s
D’s, we get , which is clearly incorrect

31 a aF � � �34 4 2 4

(except when or when ).a � 0 a � 1
2. Karigl (1981, eq. [7]) presents a matrix that permits

one to derive a vector of several different kinship co-
efficients from the vector of D’s. However, when this
matrix is applied to Génin and Clerget-Darpoux’s D’s,
the correct kinship coefficients are not recovered.

In passing, it is important to point out that the der-
ivation, in Génin and Clerget-Darpoux’s Appendix B, of
condensed identity coefficients for two sibs from a first-
cousin marriage is also incorrect. For example, they ap-
pear to compute F224 (sampling twice from one individ-
ual—i.e., person 2—and once from an unrelated person)
as a2. However, kinship sampling is done with replace-
ment, so that the chance that the same gene is sampled
twice from person 2 is , and then it is identical by1

2

descent (IBD) with the gene from person 4 with prob-
ability a. Likewise, the chance that different genes are
sampled from person 2 is , and then, since the three1

2

different genes are IBD with probability a2, F �224

. There appear to be similar mistakes through-1 1 2a � a2 2

out the derivation (e.g., for three unrelated people—2,
4, and 6—F2426 is not a3). Génin and Clerget-Darpoux’s
D’s in their Appendix B do pass the first consistency
check above, but they fail the second consistency check.

So why do Génin and Clerget-Darpoux’s results fail
to satisfy these checks? They derive their D’s for the sibs
by first deriving the parental D’s and then multiplying
these by a transition matrix. Since the transition matrix
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Table 1

Probabilities of Ordered Pairs, Kinship Coefficients, and Condensed Identity Coefficients for
Two People Drawn at Random from a Population Consisting of 25% Sibs from the Same
First-Cousin Marriage (C) and 75% Noninbred Unrelated Individuals (U)

PAIR PROBABILITY KINSHIP

CONDENSED IDENTITY COEFFICIENT

D1 D2 D3 D4 D5 D6 D7 D8 D9

(C,U) 3
16 0 0 0 0 1

16 0 0 0 0 15
16

(U,C) 3
16 0 0 0 0 0 0 1

16 0 0 15
16

(C,C) 1
16

9
32

1
64 0 1

32
1
64

1
32

1
64

15
64

15
32

3
16

(U,U) 9
16 0 0 0 0 0 0 0 0 0 1

appears to be correct to us, we believe that the problem
lies in the specification of the parental D’s. This can be
illustrated by the following scenario: Suppose that we
have a population in which of the individuals, C, are1

4

offspring (siblings) of the same first-cousin marriage and
in which the remaining of the individuals, U, are non-3

4

inbred unrelated individuals. This population has a
mean inbreeding coefficient, a, of . Then, if we ran-1

64

domly sample two individuals to form the parents of
our sib pair, we see, from the data in table 1, that we
have a zero chance of getting a parental pair in state S2,
whereas Génin and Clerget-Darpoux’s Appendix A in-
dicates that the parents should be in state S2 with a
nonzero probability . If we judge on the basis2a (1 � a)
of this slightly artificial example, it seems that one can-
not specify correctly the condensed identity coefficients
for the parents in terms of a alone; rather, one must take
the specific type and frequency of consanguineous mat-
ings into account. (Similarly, one cannot recover con-
densed identity coefficients for a pair of individuals on
the basis of knowledge of their kinship coefficient alone,
since a parent-offspring pair has the same kinship co-
efficient as does a pair of siblings.) At least, one should
use any available information about population sizes
over time: Jacquard (1974, pp. 167–171) discusses how
to adjust kinship coefficients properly for the back-
ground level of inbreeding due to finite population size
(and, in fact, derives eq. [2] under slightly different mod-
eling assumptions).

Finally, at the end of Génin and Clerget-Darpoux’s
paper, they state that the affected-pedigree-member
(APM) method of linkage analysis (Weeks and Lange
1988) fails to take “full advantage of IBW states, since
they only use a part of the information that concerns
IBD between individuals” (Génin and Clerget-Darpoux
1996, p. 1158). Although this is true, we would like to
point out that one of us (D.E.W.) has explored, in his
dissertation, assaying for increased marker similarity
within inbred individuals in the context of the APM
method (Weeks 1988). The Appendix presented here
contains a relevant (and slightly edited) extract regarding
the theoretical development of this procedure. Note that

to take full advantage of this extension of the APM
method requires that the relationships of the affected
individuals be known and specified. As our critique of
Génin and Clerget-Darpoux’s paper suggests, it may be
difficult to properly analyze pedigrees from an inbred
population, unless one devotes much effort to deter-
mining, as best as possible, the precise structure of each
family.
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Appendix

Usually “a sample of unrelated individuals can give
no information about linkage” (Smith 1953, p. 159),
but this principle does not hold in the case of inbred
individuals. For example, consider an affected offspring
of a first-cousin marriage. If the disease is very rare and
recessive, then the affected person is almost certainly
homozygous by descent at the disease locus and so
would also show increased homozygosity at any marker
loci closely linked to the disease locus. If this increased
homozygosity can be observed, then, as Smith (1953)
first observed, a sample of inbred individuals may
contain information about linkage. Lander and Botstein
(1987) later elaborated this approach, naming it
“homozygosity mapping.”

The original APM statistic involves comparisons of
marker identity-by-state (IBS) status between affected
individuals (Weeks and Lange 1988). In order to apply
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this statistic in the context of homozygosity mapping, it
must be modified to include comparisons within
individuals. The APM statistic was constructed in terms
of a random variable, Zij, which measures the IBS marker
similarity between two affected individuals, i and j. Let
i have maternal marker allele Gix and paternal marker
allele Giy. Likewise, let j have maternal marker allele Gjx

and paternal marker allele Gjy. The original definition
of Zij, for , wasi ( j

1 1
Z � d(G , G )f(p ) � d(G , G )f(p )ij ix jx G ix jy Gix ix4 4

1 1
� d(G , G )f(p ) � d(G , G )f(p ) ,iy jx G iy jy Giy iy4 4

where the Kronecker delta is defined as

′d(G, G ) �

′1 G and G match in state
.′{0 G and G do not match in state

Each match is weighted by the function f(p) of the
frequency of the allele involved. Zij can be interpreted
as a conditional expectation. In the usual notation for
conditional expectations,

Z � E[d(G ,G )f(p )Fobs. marker genotypes of i and j] ,ij i j Gi

where Gi and Gj are randomly selected marker genes
from i and j, respectively. If we permit i to equal j, then
this definition gives

1 1 1
Z � f(p ) � d(G , G )f(p ) � f(p ) .ii G ix iy G Gix ix iy4 2 4

To construct an analytically computable statistic, we
need to find formulas for the mean and variance of Zii.
The mean of Zii is easy to calculate by exploiting the
logic of Weeks and Lange (1988):

n n

2E(Z ) � F p f(p ) � (1 � F ) p f(p ) .� �ii ii k k ii k k
k�1 k�1

In order to simplify this expression, let FFM be the
probability that the paternal and maternal genes of
person i are IBD. Recall that . Then,1F � (1 � F )ii FM2

n1
E(Z ) � p f(p )�ii k k2 k�1

n1 2[ ]� F p f(p ) � (1 � F )p f(p ) .� FM k k FM k k2 k�1

From the intimidating formula (6) presented by Weeks
and Lange (1988) for E[ZijZkl], we find that, when

,i � j � k � l

2 { }E(Z Z ) � p f(p ) F (G , G , G , G )[� ]ii ii m m i i i i

2

{ }� p f(p ) F (G , G )(G , G )[� ]m m i i i i

2F{(G ,G )(G ,G )}2 2 i i i i� p f(p ) ,[� ]m m { }�4F{(G ,G ,G )(G )}i i i i

where the F()’s are generalized kinship coefficients as
described by Weeks and Lange (1988). Now,

F{(G , G , G , G )}i i i i

� P[(G , G , G , G ) d picked the same allele four times]i i i i

#P[picked the same allele four times]

[ ]�P (G , G , G , G )Fpicked both allelesi i i i

1 7
#P � (1) � F .[picked both alleles] FM( ) ( )8 8

Similar reasoning leads to F{(Gi,Gi)(Gi,Gi)} � (1�FFM)1
8

and . Thus,1F{(G , G , G ), (G )} � (1 � F )i i i i FM8

1 72E(Z Z ) � p f(p ) � F[� ]ii ii m m FM[ ]8 8

2 1
� p f(p ) (1 � F )[� ]m m FM[ ]8

62 2� p f(p ) (1 � F ) .[� ]m m FM[ ]8

Note that, in order to find E(Z2), we also need to
calculate terms such as E(ZiiZij). However, in the
computer program, it is easier to use the general formula
(6) presented by Weeks and Lange (1988) than to use
specific expressions for each special case.

For a pedigree, from the various statistics Zij, we form
the overall statistic . The mean and varianceZ � S ZiXj ij

of Z may be computed by the following equations:

E(Z) � E(Z )� ij
iXj

and

2E(Z ) � E(Z Z ) .� ij kl
iXj

kXl
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When combining the Z statistics from different
pedigrees into the test statistic T (see Weeks and Lange
1988, eq. [7]), we cannot use the weights wm in equation
(8) of Weeks and Lange (1988), since we may now have
pedigrees with only one inbred affected individual. If rm

is the number of affected and typed individuals in the
mth pedigree and if Zm is the Z statistic for this pedigree,
then we choose to use . There is no� �w � r / Var(Z )m m m

rigorous justification for this choice of weights.
However, intuitively it seems better than giving all
pedigrees equal weight.

Weeks (1988) investigated some sample applications
of this extended APM statistic, which is based on
measurement of IBS marker similarity within affected
individuals as well as between pairs of affected relatives.
Note that the computation of this statistic requires that
the pedigree structure linking the affected relatives be
known.
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